Our products and technology platforms are underpinned by high quality science and example publications can be seen below.

Upper critical solution temperature thermo-responsive polymer brushes and a mechanism for controlled cell attachment.
XUE X, et al., 2017.  J. Materials Chemistry B. 5(25), 4926-4933.

Glioblastoma survival benefits from neurosurgical delivery of PLGA/PEG interstitial therapy.
Smith, S, et al., 2017, Neuro-oncology. 19, 56-56.

A Detailed Assessment of Varying Ejection Rate on Delivery Efficiency of Mesenchymal Stem Cells Using Narrow-Bore Needles.
Amer. M.H., et al., 2016. Stem Cells Translational Medicine. 5(3), 366-378.

Thermoresponsive magnetic colloidal gels via surface-initiated polymerisation from functional microparticles.
Braim, S.A., et al., 2016. J. Materials Chemistry B. 4(5), 962-972.

A Thermoresponsive and Magnetic Colloid for 3D Cell Expansion and Reconfiguration.
Saeed, A., et al., 2015. Advanced Materials. 27, 662-558.

Thermoresponsive magnetic colloidal gels via surface-initiated polymerisation from functional microparticles.
 Braim, S.A., et al., 2015.  J. Materials Chemistry B. 4, 962-972.

Evaluation of a Thermoresponsive Polycaprolactone Scaffold for In Vitro Three-Dimensional Stem Cell Differentiation.
Hruschka, V., et al., 2015. Tissue Engineering Part A. 21(1-2), 310-319.

A biodegradable antibiotic-impregnated scaffold to prevent osteomyelitis in a contaminated in vivo bone defect model.
McLaren, J. S., et al., 2014. Eur Cell Mater. 27, 332-349.

Controlled release of BMP-2 from a sintered polymer scaffold enhances bone repair in a mouse calvarial defect model.
Rahman, C.V., et al., 2014. J. Tissue Engineering and Regenerative Medicine. 8(1), 59-66.

Surgical delivery of drug releasing poly(lactic-co-glycolic acid)/poly(ethylene glycol) paste with in vivo effects against glioblastoma.
Smith, S.J., et al., 2014. Annals of the Royal College of Surgeons of England. 96(7), 495-501.

Injectable and porous PLGA microspheres that form highly porous scaffolds at body temperature.
Qutachi, O., et al., 2014. Acta Biomaterialia. 10(12), 5090-5098.

PLGA/PEG-hydrogel composite scaffolds with controllable mechanical properties. 
Rahman, C.V., et al., Journal of Biomedical Materials Research. Part B, Applied biomaterials. 101(4), 648-55.

Gelation of microsphere dispersions using a thermally-responsive graft polymer. 
Shahidan, N.N., et al., 2013. Journal of Colloid and Interface Science. 396, 187-96.

Delivery of definable number of drug or growth factor loaded poly(dl-lactic acid-co-glycolic acid) microparticles within human embryonic stem cell derived aggregates.
Qutachi, O., et al., 2013. Journal of Controlled Release 168(1), 18-27. 

Accelerating protein release from microparticles for regenerative medicine applications.White, L.J., et al., 2013.
Materials Science & Engineering. C, Materials for Biological Applications. 33(5), 2578-83

The osteogenic response of mesenchymal stem cells to an injectable PLGA bone regeneration system.
Curran, J.M., et al., 2013. Biomaterials. 34(37), 9352-64.